Kudentoštkümnen nellikon identižuz

Vikipedii
Hüpähtada: navigacii, Ecind

Pfisteran kudentoštkümnen nellikon identižuz om matematine teorem.

Kudentoštkümnen nellikon summoiden liža (произведение) om kudentoštkümnen nellikon summ.

Toziolendas:

\,^{z_1 = x_1 y_1 - x_2 y_2 - x_3 y_3 - x_4 y_4 - x_5 y_5 - x_6 y_6 - x_7 y_7 - x_8 y_8 + u_1 y_9 - u_2 y_{10} - u_3 y_{11} - u_4 y_{12} - u_5 y_{13} - u_6 y_{14} - u_7 y_{15} - u_8 y_{16}}
\,^{z_2 = x_2 y_1 + x_1 y_2 + x_4 y_3 - x_3 y_4 + x_6 y_5 - x_5 y_6 - x_8 y_7 + x_7 y_8 + u_2 y_9 + u_1 y_{10} + u_4 y_{11} - u_3 y_{12} + u_6 y_{13} - u_5 y_{14} - u_8 y_{15} + u_7 y_{16}}
\,^{z_3 = x_3 y_1 - x_4 y_2 + x_1 y_3 + x_2 y_4 + x_7 y_5 + x_8 y_6 - x_5 y_7 - x_6 y_8 + u_3 y_9 - u_4 y_{10} + u_1 y_{11} + u_2 y_{12} + u_7 y_{13} + u_8 y_{14} - u_5 y_{15} - u_6 y_{16}}
\,^{z_4 = x_4 y_1 + x_3 y_2 - x_2 y_3 + x_1 y_4 + x_8 y_5 - x_7 y_6 + x_6 y_7 - x_5 y_8 + u_4 y_9 + u_3 y_{10} - u_2 y_{11} + u_1 y_{12} + u_8 y_{13} - u_7 y_{14} + u_6 y_{15} - u_5 y_{16}}
\,^{z_5 = x_5 y_1 - x_6 y_2 - x_7 y_3 - x_8 y_4 + x_1 y_5 + x_2 y_6 + x_3 y_7 + x_4 y_8 + u_5 y_9 - u_6 y_{10} - u_7 y_{11} - u_8 y_{12} + u_1 y_{13} + u_2 y_{14} + u_3 y_{15} + u_4 y_{16}}
\,^{z_6 = x_6 y_1 + x_5 y_2 - x_8 y_3 + x_7 y_4 - x_2 y_5 + x_1 y_6 - x_4 y_7 + x_3 y_8 + u_6 y_9 + u_5 y_{10} - u_8 y_{11} + u_7 y_{12} - u_2 y_{13} + u_1 y_{14} - u_4 y_{15} + u_3 y_{16}}
\,^{z_7 = x_7 y_1 + x_8 y_2 + x_5 y_3 - x_6 y_4 - x_3 y_5 + x_4 y_6 + x_1 y_7 - x_2 y_8 + u_7 y_9 + u_8 y_{10} + u_5 y_{11} - u_6 y_{12} - u_3 y_{13} + u_4 y_{14} + u_1 y_{15} - u_2 y_{16}}
\,^{z_8 = x_8 y_1 - x_7 y_2 + x_6 y_3 + x_5 y_4 - x_4 y_5 - x_3 y_6 + x_2 y_7 + x_1 y_8 + u_8 y_9 - u_7 y_{10} + u_6 y_{11} + u_5 y_{12} - u_4 y_{13} - u_3 y_{14} + u_2 y_{15} + u_1 y_{16}}
\,^{z_9  =  x_9 y_1 - x_{10} y_2 - x_{11} y_3 - x_{12} y_4 - x_{13} y_5 - x_{14} y_6 - x_{15} y_7 - x_{16} y_8 + x_1 y_9 - x_2 y_{10} - x_3 y_{11} - x_4 y_{12} - x_5 y_{13} - x_6 y_{14} - x_7 y_{15} - x_8 y_{16}}
\,^{z_{10} = x_{10} y_1 + x_9 y_2 + x_{12} y_3 - x_{11} y_4 + x_{14} y_5 - x_{13} y_6 - x_{16} y_7 + x_{15} y_8 + x_2 y_9 + x_1 y_{10} + x_4 y_{11} - x_3 y_{12} + x_6 y_{13} - x_5 y_{14} - x_8 y_{15} + x_7 y_{16}}
\,^{z_{11} = x_{11} y_1 - x_{12} y_2 + x_9 y_3 + x_{10} y_4 + x_{15} y_5 + x_{16} y_6 - x_{13} y_7 - x_{14} y_8 + x_3 y_9 - x_4 y_{10} + x_1 y_{11} + x_2 y_{12} + x_7 y_{13} + x_8 y_{14} - x_5 y_{15} - x_6 y_{16}}
\,^{z_{12} = x_{12} y_1 + x_{11} y_2 - x_{10} y_3 + x_9 y_4 + x_{16} y_5 - x_{15} y_6 + x_{14} y_7 - x_{13} y_8 + x_4 y_9 + x_3 y_{10} - x_2 y_{11} + x_1 y_{12} + x_8 y_{13} - x_7 y_{14} + x_6 y_{15} - x_5 y_{16}}
\,^{z_{13} = x_{13} y_1 - x_{14} y_2 - x_{15} y_3 - x_{16} y_4 + x_9 y_5 + x_{10} y_6 + x_{11} y_7 + x_{12} y_8 + x_5 y_9 - x_6 y_{10} - x_7 y_{11} - x_8 y_{12} + x_1 y_{13} + x_2 y_{14} + x_3 y_{15} + x_4 y_{16}}
\,^{z_{14} = x_{14} y_1 + x_{13} y_2 - x_{16} y_3 + x_{15} y_4 - x_{10} y_5 + x_9 y_6 - x_{12} y_7 + x_{11} y_8 + x_6 y_9 + x_5 y_{10} - x_8 y_{11} + x_7 y_{12} - x_2 y_{13} + x_1 y_{14} - x_4 y_{15} + x_3 y_{16}}
\,^{z_{15} = x_{15} y_1 + x_{16} y_2 + x_{13} y_3 - x_{14} y_4 - x_{11} y_5 + x_{12} y_6 + x_9 y_7 - x_{10} y_8 + x_7 y_9 + x_8 y_{10} + x_5 y_{11} - x_6 y_{12} - x_3 y_{13} + x_4 y_{14} + x_1 y_{15} - x_2 y_{16}}
\,^{z_{16} = x_{16} y_1 - x_{15} y_2 + x_{14} y_3 + x_{13} y_4 - x_{12} y_5 - x_{11} y_6 + x_{10} y_7 + x_9 y_8 + x_8 y_9 - x_7 y_{10} + x_6 y_{11} + x_5 y_{12} - x_4 y_{13} - x_3 y_{14} + x_2 y_{15} + x_1 y_{16}}

kus

u_1 = \tfrac{(ax_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2)x_9 - 2x_1(bx_1 x_9 +x_2 x_{10} +x_3 x_{11} +x_4 x_{12} +x_5 x_{13} +x_6 x_{14} +x_7 x_{15} +x_8 x_{16})}{c}
u_2 = \tfrac{(x_1^2+ax_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2)x_{10} - 2x_2(x_1 x_9 +bx_2 x_{10} +x_3 x_{11} +x_4 x_{12} +x_5 x_{13} +x_6 x_{14} +x_7 x_{15} +x_8 x_{16})}{c}
u_3 = \tfrac{(x_1^2+x_2^2+ax_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2)x_{11} - 2x_3(x_1 x_9 +x_2 x_{10} +bx_3 x_{11} +x_4 x_{12} +x_5 x_{13} +x_6 x_{14} +x_7 x_{15} +x_8 x_{16})}{c}
u_4 = \tfrac{(x_1^2+x_2^2+x_3^2+ax_4^2+x_5^2+x_6^2+x_7^2+x_8^2)x_{12} - 2x_4(x_1 x_9 +x_2 x_{10} +x_3 x_{11} +bx_4 x_{12} +x_5 x_{13} +x_6 x_{14} +x_7 x_{15} +x_8 x_{16})}{c}
u_5 = \tfrac{(x_1^2+x_2^2+x_3^2+x_4^2+ax_5^2+x_6^2+x_7^2+x_8^2)x_{13} - 2x_5(x_1 x_9 +x_2 x_{10} +x_3 x_{11} +x_4 x_{12} +bx_5 x_{13} +x_6 x_{14} +x_7 x_{15} +x_8 x_{16})}{c}
u_6 = \tfrac{(x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+ax_6^2+x_7^2+x_8^2)x_{14} - 2x_6(x_1 x_9 +x_2 x_{10} +x_3 x_{11} +x_4 x_{12} +x_5 x_{13} +bx_6 x_{14} +x_7 x_{15} +x_8 x_{16})}{c}
u_7 = \tfrac{(x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+ax_7^2+x_8^2)x_{15} - 2x_7(x_1 x_9 +x_2 x_{10} +x_3 x_{11} +x_4 x_{12} +x_5 x_{13} +x_6 x_{14} +bx_7 x_{15} +x_8 x_{16})}{c}
u_8 = \tfrac{(x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+ax_8^2)x_{16} - 2x_8(x_1 x_9 +x_2 x_{10} +x_3 x_{11} +x_4 x_{12} +x_5 x_{13} +x_6 x_{14} +x_7 x_{15} +bx_8 x_{16})}{c}

da

a=-1,\;\;b=0,\;\;c=x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2\,.
Wiki letter w.svg Nece kirjutuz om vaiše ezitegez. Tö voit abutada meile, ku kohendat sidä da ližadat sihe.